
BENDING OF A CIRCULAR PLATE ON A NONUNIFORM 

ELASTIC FOUNDATION IN PARTIAL CONTACT WITH THE PLATE 

V. I. Dudinskil UDC 539.3:624.073.2 

Problems concerning the design of structures on an elastic foundation are of great 
practical importance. By choosing an elastic isotropic half-space as the design model, many 
investigators have constructed solutions to problems of the bending of plates for a wide 
range of plate loads and shapes [1-6]. However, the use of these solutions in engineering 
practice has revealed several shortcomings of the model of a uniform elastic half-space. In 
particular, the theoretical values of deflection and bending moment are overstated. One 
reason for this is the nonunlformlty of the elastic properties of most actual foundations 
(such as soils) through their depth. Attempts have been made to allow for this nonunifor- 
mity and correct the results obtained from the uniform elastic half-space model by also 
examining an elastic model which is an exponential or power function of depth (here, the 
Poisson's ratio is assumed to be constant). An exhaustive listing of the published investi- 
gations of this problem can be found in the bibliographies of [7-9], while a survey of indi- 
vidual studies can be found in [4, 5, i0, ii]. 

Here, we examine an axisymmetric problem concerning the bending of a circular plate on 
an elastic foundation with which it is in incomplete contact (with the condition of uni- 
lateral constraint). The model of the foundation is an elastic isotroplc continuous-nonuni- 
form half-space with a depthwise-varying Poisson's ratio and a constant shear modulus. Solu- 
tion of the problem by the method of pairwise integral equations reduces to a linear 
Fredholm integral equation of the second type. 

I. We will examine an elastic isotropic continuous-nonuniform half-space as the elas- 
tic foundation. The points of the half-space belong to the region z Z 0 in the cylindrical 
coordinate system r, 8, z. The shear modulus of the materla] of the foundation ~ is assumed 
to be constant, while the Poisson's ratio v = v(z) is an arbitrary (sufficiently smooth) 
function of depth. The proposed model can be regarded as a model of an elastic foundation 
with a variable elastic modulus. In this case, the elastic modulus changes with depth 
according to the familiar relation E(z) = 2~[i + v(z)]. 

Let a circular plate of radius R be at rest without friction on the surface z = 0 of 
the half-space. The symmetry axis of the plate coincides with the z axis. An axisymmetri- 
cally distributed normal load of the intensity q(r) acts on the plate from above, while the 
plate contour is subjected to circumferential pairs of forces with the bending moment M. 
The reactive (contact) pressure p(r) develops under the plate in the contact region. Out- 
side the contact area, the surface of the half-space is free of loads. Given sufficiently 
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small values of M, the plate will be in complete contact with the foundation. With an 
increase in M, the plate may separate from the foundation, i.e., the radius of the area of 
contact a may become less than the radius of the plate. The limiting value of the moment 
at which plate separation occurs will be designated as M, (here, a = R). 

Proceeding on the basis of the Kirchhoff hypothesis in classical plate theory, we find 
that the displacements of points of the middle surface of the plate (deflections) w(r) 
satisfy the ordinary differential equation derived by S. Germain [12] 

V~V2w(r) = [q(r) -- p(r)]/O, ( 1 .  ! )  

where V 2 = r-Zd[rd/dr]/dr is the Laplace operator; D is the cylindrical stiffness of the 
plate. With the prescribed plate loading conditions, the solution of Eq. (i.i) can be 
represented in the form 

r 

Mr 2 I S 
W (r) = w o 2D (1 I-  v.) ~4-D [q (t) - -  p (t)l [(r ~ + t 2) In (r/t)--(r z -  tz)] t dt--  

0 

n (1.2) 

40 [q (t) - -  p (QI [In (tlfl) + (e/2) (t - -  t~/Ra)l t dt. 
@ 

H e r e ,  Wo = w ( 0 ) ;  c = (1 - -  u . ) / ( 1  + v . ) ;  u .  i s  t h e  P o i s s o n ' s  r a t i o  o f  t h e  p l a t e  m a t e r i a l .  

We c a n  d e t e r m i n e  Wo w i t h  t h e  a i d  o f  t h e  p l a t e  e q u i l i b r i u m  c o n d i t i o n  

R 

S q(t)t ' lt  = ~p(t)  t dt. ( 1 . 3 )  
0 0 

In the absence of shear stresses at the interface, the vertical displacements of points 
of the boundary of the half-space uz(r) and the normal stresses at these points oz(r) are 
connected by the relation [13, 14] 

uz(r ) = (2~t ) - ' ( l  - -  vo)rS_i/2.,{(J ~- k),l,}(r), ( 1 . 4 )  

~,(, ') = - -So.o{~}(r ) ,  
o o  

w h e r e  ~( t )  = So,o{p}(t); p(r) = --c%(r) ( r<.~a);  S~.~{]} (t)=: 2~t -~ j" x~-~/(x) J2=+~ (tx) dx; k (t) :=: [2 (t - - v o ) t A  
0 

( t ) l - l - - i ;  v o = v ( 0 ) ;  A (t)-----;  [ t - - v  (x)l-lexp(--2tx)dx; J i s  a B e s s e l  f u n c t i o n  o f  t h e  f i r s t  k i n d .  
0 

~le equality of the deflections of the plate and the vertical displacements of the 
boundary of the half-space at points of the area of contact, together with the absence of 
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loads on the surface of the half-space outside ~:he co, tact area, leads to the following 
boundary conditions 

uz(r) = w(r), r << a, oz(r ) = O, r >  a. (l.5) 

The condition of vanishing of the contact pressure at the boundary of the contact area 
is used to determine the radius of this area. Of the main interest in performing calcula- 
tions for plates on an elastic foundation is determination of the contact pressure and the 
plate deflection. These quantities make it possible to then complete the design of the 
plate, i.e., to find the transverse force and bending moments and, thus, the normal and 
shear stresses in the plate. 

2. Using integral representations (1.4) and satisfying boundary co1~ditions (1.5), we 
arrive at paired integral equations in ~: 

3-1/2,1{(t -t- k)$}(r)  = 2 , ( t  - -  vo)-'r-hv(r), r < a, ( 2 . 1 )  

So ,o{ r  = O, r ~ a .  

The normal procedure is used to reduce Eqs. 
the second type [14] 

L 

r (z) -t- I N (x, u) q~ (u) du = H (z), 0 ~< z <~ t ,  
0 

i " 
d f rw(ar)dr 

N ( x ,  u) = 27~ -1 k ( t /a )cos (x t )cos (u t )d t ,  H ( z )  = ~ - j ( ~ - - ~ ) - i T a '  
0 0 

where the function ~ is connected with the function ~ by the relation 

l 

, (z) = 21aa:~-' ( t  - -  %)-1  ~ q~ ( t)cos (azt) dt. 
0 

(2.1) to a Fredholm integral equation of 

(2.2) 

( 2 . 3 )  

In accordance with (1.2), the right side of integral equa:iom (2.2) depends on p(r). 
Using (1.4) and (2.3), we express p(r) in the right side of (2.2) through ~ . After this, 
the integral equation takes the form 

1 

q~ (z) + ~ IN (z, u) + ~.a"K (z, u)] r (u) &~ = F (x). ( 2 . 4 )  
D 

H e r e ,  ,1, = 21aRS[nD(t --  %)]-1;  d = a/R; 

K(x,  u) = {(x A- u)~ln[2(x A- u)]  -4- (z - -  u)~lnl2(x - -  u)[ - -  
- -2uHn(2u )  - -  cz4(l - -  2u z) - -  xz[3 + 2c(t  - -  a~)u ~ - -  In d l} /4 ;  
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x 

F (x)= w e -- Ma2D - '  (l + v, ) - 'x  2 4- ~ y  q(at){(t 2 -{-2x 2) In [z + (~'7--,2)'/2.]_ 
0 

l 

- -  3z (~ -- t2) '/2 t dt-- ,2-5 j q (Rt) [(o/2) (1 -- t ~) -- In t] t dr. 
0 

Taking Eqs. (1.4) and (2.3) into account, we obtain expressions for the contact pres- 
sure and the deflections of the plate 

,p ( r )  = h a ( 1 2 F  q) ( | )  ~' (t) dt 2 ~ (t) dt  
- -  'Vn) (I_ - -  D2) 1/2 ( t  2 - -  p2 ) I / 2  ' U) (F) = ~-- (i~2 - -  t2)1/2 .l- 

-F~(p(Odt k(x/a) Jo(PX)eos(tx)dx , p = r / a ,  r ~ a .  
0 0 

( 2 . 5 )  

With v = const, the function k vanishes, and Eqs. (2.4) and (2.5) give a solution of the 
problem of the bending of a circular plate on an isotropic uniform elastic half-space which 
agrees with the solution found in [15]. It should be noted that the formula for w(r) 
(r ~ R) can be obtained by inserting the expression for p(r) (2.5) into (1.2). 

The plate equilibrium condition (1.3) takes the form 

I 1 

nR 2 (t - -  ~o) ~ q (Bt) t dt = 21~a ~ ~ (t) dt. (2 .6)  
0 0 

It also follows from (2.5) that the condition of vanishing of p(r) at the boundary of 
the contact area is equivalent to the condition 

qD(1) = O. (2.7) 

3. We will describe the procedure for finding the radius of the area of contact for 
the loading of a plate by a normal load uniformly distributed over its surface, i.e., with 
q = const. In this case, the right side of integral equation (2.4) is written in the form 

qR 4 [d4x r 
F (x) = w o + ~ L-~-  

w h i l e  t h e  e q u i l i b r i u m  e q u a t i o n  ( 2 . 6 )  b e c o m e s  

1 

4pa ~ (p (t) dt 
0 

(2-F c) amx~ ] Ma2z ~ 
4 ] D (! 4- ~,) ' 

=-- q a  ( l  - -  %'0) 1~2" (3. i )  
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We represent the solution of integral equation (2.4) in the form 

ql{ 4 Ma ~ 
q~ (x) = Woq) , (x) + ~ % (x) D (i + ~,)  % (x), 

where ~(x) (i = i, 2, 3) are the solutions of the Fredholm integral equations of the 
second kind, respectively, 

( 3 . 2 )  

1 

(Pi (x) + ~ IN (x, u) + s (x, u)l q~i (u) du = Fi (x), 
0 

a ~  ~ (2 ~ c_.~) d~x~ ' Fa (x) = z ~. F~ (x) ---- t ,  F , ( x ) =  6 
( 3 . 3 )  

It should be noted that the determination of u with a prescribed value of R is equiva- 
lent to the determination of d. 

Satisfying conditions (2.7) and (3.1) by means of (3.2), we obtain an expression for 
the maximum plate deflection in the contact region wo and an equation relative to d: 

qR 4 
w~ = 4~D (~ -- %%ai [(2/d) -- ~, (% -- %rp~3)]; 

aM ~ + e'ztPl3-- 8tq)23 d 2(Pla ~-0 
~ n  ~ (~ + ,,.) ~, - ~ ~ ( ~  - ~ % )  

~, = ~ ,  (t) dt, ~ = t ,  2,  3, ~p~ = ~ (1)/% (1), 1 ~= 1, 2 . 
0 

( 3 . 4 )  

( 3 . 5 )  

Thus, the radius of the contact area is found from the simultaneous solutions of 
Fredholm integral equations (3.3) and Eq. (3.5). It should be noted that the above proce- 
dure for determining the radius of the contact area is easily generalized to the case of 
loading of a plate hy a load of the intensity q(r). 

The expression for the limiting moment M, is obtained from (3.5) with d = I; 

M*=qR~(t  + v*){ r162 V }  ( 3 . 6 )  

With allowance for (3.4) and (3.5), Eq. (3.2) can be represented in the form 

r .= qR4(~.O)- lq~4(x), 
2 - ~d ( % -  8:,q,,.~) % (x) + ~" ,2,r,8 + ~.a (~,,r,:, - %%~) cp~ (x). 

r (x) = ~a (a, - %q',3) ~ % (x) - 4a (8~ - ~:,'r~a) 

q ~ r (t) at 
Then p (r) = --  "ff .j (t2 ~ p~)l/~ �9 

D 

4. To obtain numerical results, we will assume that the Poisson's ratio of the material 
of the half-space changes with depth according to the law ~(z) = i ~ [A + B exp(--2yz)] -I, 
?>~ 0. Considering that the Poisson's ratio of actual materials ranges from 0 to 0.5, we 
find that the ranges of the parameters A and B are the intervals [i, 2] and [--i, i], respec- 
tively. 

In this case, the function k has the form k(t/a) = cleric I + d-1(l q- c2)t] "I (cI = yR, c= = 
B/A). Then the kernel of the Fredholm integral equation (and, thus, its solution) depend 
on the dimensionless parameters c, ci, ca, and %. The ranges of the parameters cx and ca 
are the intervals [0, ~) and [--0.5, i]. The parameter ca allows the representation ca = 
(~o ~ ~)(i -- ~o) -~ (~ is the Poisson's ratio at an infinitely great depth). It follows 
from this that ~(z) increases with depth at ca < 0 and decreases at ca > O. 

Assuming that c~ = 0 or ca = O, we arrive at the solution of the problem for a uniform 
half-space with the coefficient ~o. At ci -~ ~, the solution of the problem becomes the solu- 
tion for a uniform half-space with the coefficient ~o(i + ca) -- ca. 

To check the numerical calculations, it is necessary to assign values to the dimension- 
less quantities % and c. Assigning the value of the parameter X with fixed B, D, and R 
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unambiguously determines 9o. Numerical calculations were performed for % = 1 and c = 5/7. 

The value of M, was calculated from Eq. (3.6) after finding @t (i = i, 2, 3) from 

(3.3) with d = i. The solutions of integral equations (3.3) were obtained by the method 
of formulas of integration [16]. 

Figure i shows the dependence of the dimensionless quantity al = M,/~ -- i on the 
parameters c, and c2. Here, MS is the limiting bending moment at which plate separation 
occurs in the case of the problem for a uniform half-space (with the same values of % and c). 
It is evident from the data that fall increases with an increase in cI(Ic2 I) at fixed nontri- 
vial values of c2(c~). Considering that al > 0 at c2 > 0 and ~ < 0 at c2 < 0, we conclude 

O o 
that M, > M, at c2 > 0 and M, < M, at c2 < 0, i.e., for an elastic foundation whose Pois- 
son's ratio decreases with depth, plate separation occurs at a greater value of the bending 
moment than in the case of an elastic foundation with a constant coefficient vo. Separation 
occurs at a lower value of the bending moment for an elastic foundation whose Poisson's 
ratio increases with depth. 

Let us assign the bending moment M = 1.8qR 2 (M ~ 1.99M~). It can be seen from Fig. i 
that at this value of bending moment, the plate separates from the foundation at any value 
of c~ and c2 within their ranges of variation. 

The radius of the contact area was found (to within i0 -~) from the simultaneous solution 
of Eqs. (3.3) and (3.5) by the method of successive approximations (we took a = R as the 
initial approximation). 

Figures 2-4 show the dependences of the dimensionless quantities =2 = a/a~ -- i, ~3 = 

Wo/W~ -- 1 and a~ = p(0)/p~ -- 1 on ci and c2, respectively. Here a ~ w~, andp~ the 
radius of the contact area, the maximum deflections of the plate in the contact region, and 
the maximum contact pressure in the case of the problem for a uniform half-space (with the 
same values of ~ and c). 

It follows from the above numerical examples that allowing for an increase (decrease) 
in the Poisson's ratio of the elastic foundation leads to a reduction (increase) in the 
theoretical values of the radius of the contact area and the maximum deflections of the 
plate, respectively, of up to 19.7 (24.6) and 37.8% (60.8%) and to an increase (decrease) 
in the theoretical values of maximum reactive pressure of up to 153.8% (59.6%). 

The case of a depthwise increase in the Poisson's ratio corresponds to the model of an 
elastic foundation whose elastic modulus increases with depth. Such a rule is generally 
characteristic of the elastic modulus of soils [I]. 

Thus, we have solved an axisymmetric problem concerning the bending of a circular plate 
on a nonuniform elastic foundation in partial contact with the plate. The solution takes 
into account the depthwise change in the Poisson's ratio of the foundation material. The 
results of numerical calculations provide evidence that nonuniformity of the foundation has 
a substantial effect on the conditions of separation of the plate from the foundation and 
the theoretical characteristics describing their interaction. 
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